

DENTAL IMPLANTS

Dri

Prot

Ø3.5

Ø3.75

Ø4.2

Ø5.0

Ø6.0

DENTAL IMPLANTS

MOR - Spiral Implant

MOR Implant is a highly compatible implant solution based on the popular Internal Hexagon connection with SLA - Sand blast, double etched in acid surface treatment. With its tapered body and exceptional self-drilling capabilities, it establishes a strong and stable connection suitable for immediate loading. MOR Implant adapts to various bone types and augmentation procedures, making it an ideal choice for a wide range of patients.

CONNECTION: • Internal Hexagon 2.42mm. Slim Platform - Internal Hexagon 2.0mm. MATERIAL: Ti-6AI-4V ELI (Titanium Grade 5). SURFACE TREATMENT: SLA - Sandblast, Large Grit, Acid-etch. STERILIZATION: Gamma irradiation.

SPECIFICATIONS:

CONNECTION AND PLATFORM SWITCHING

- Internal Hexagon One universal platform for all diameters.
- Minimizes crestal bone loss, promotes bone and soft tissue growth, improves natural aesthetics.

TAPERED BODY WITH SPIRAL DESIGN

- Optimal soft tissue support.
- Excellent primary stability.
- Improves bone condensation during insertion.

AGGRESSIVE APICAL THREADS

 Allow for more aggressive bone engagement for indications such as immediate extraction sockets, poor bone quality, and immediate loading.

SLA - SANDBLAST, LARGE GRIT, ACID-ETCH

Enhances dental implant stability and osseointegration, improving long-term success rates.

• Self-tapping. Self-drilling.

Increases load distribution.

ROUND APEX

- Enhances implant stability.
- Protects sinus from perforation, and minimizes the risk of anatomical structure damage.

		_										Dental Imp	lants 🕅
			D1 (mn	ר)	D2 (n	nm)	D3	(mm)	L	(mm))	co	DE
\bigcirc										10		S30	010
\bigcirc			~		~~		_			11.5		S30	
\leq			Ø3.0		Ø2.	.75	Ø	2.3		13		S30	
2.0mm										16		S30	
										8		M35	
\bigcirc										10		M35	
\bigcirc			Ø3.5		Ø3	3.1	Ø	2.4		11.5		M3	
			,		/		/-			13		M3	
.42mm										16		M35	516
										8		M37	
DI	-									10		M31	710
	\sum		Ø3.75	5	Ø3.	75	Q	53.1		11.5		M3'	
	12						,			13		M3'	713
	15									16		M3	
	\bigwedge									6		M42	206
	3									8		M42	
	T		d'		<i>d</i> 7	05	0	20		10		M42	
	21		Ø4.2		Ø3.	95	Ø	3.2		11.5		M4	
	[]									13		M4	213
	\mathcal{D}									16		M42	
////	L									6		M50	
{										8		M50	
///Λ	\sim		<i>а</i> г о		a	6	0			10		M50	010
K			Ø5.0		Ø4	4.6	X	4.1		11.5		M5	
////										13		M50	213
////										16		M50	216
///\	7									6		M60	006
										8		M60	800
$ \neg$	2		Ø6.0)	Ø5	5.6	Ø	5.1		10		M60	010
D3 :	41									11.5		M6	011
D2										13		M60	213
ling :ocol	Marking Drill	ø2.0 O	Ø2.5	Ø2.8	Ø3.2	Ø2.5x3.75	Ø2.7x4.0	Ø3.65	05.'5x4.2	Ø4.2	Ø4.5	Ø5.2	Countersink Ø5.0x6.0
Soft Bone	•	-0-											
Hard Bone	•	-0		-									
Soft Bone	•	-0		-									
Hard Bone	•	-0				•							
Soft Bone	<u> </u>												
Hard Bone	•	_0					•						
Soft Bone	•	-0					-0	•					
Hard Bone	•								-0				
Soft Bone	• •												
Hard Bone	• •										0 0-		
Soft Bone Hard Bone	• •											-	
naru Bone	•	0						-			0		

The suggested drilling protocol is only a recommendation and should not replace the doctor's opinion.

DENTAL IMPLANTS

l Hex

DENTAL IMPLANTS

RBM - Spiral Implant

RBM Implant is a highly compatible implant solution based on the popular Internal Hexagon connection with RBM - Resorbable Blast Media surface treatment. With its tapered body and exceptional self-drilling capabilities, it establishes a strong and stable connection suitable for immediate loading. RBM Implant adapts to various bone types and augmentation procedures, making it an ideal choice for a wide range of patients.

CONNECTION: • Internal Hexagon 2.42mm. • Slim Platform - Internal Hexagon 2.0mm. MATERIAL: Ti-6AI-4V ELI (Titanium Grade 5).

SURFACE TREATMENT: RBM - Resorbable Blast Media. STERILIZATION: Gamma irradiation.

SPECIFICATIONS:

CONNECTION AND PLATFORM SWITCHING

- Internal Hexagon One universal platform for all diameters.
- Minimizes crestal bone loss, promotes bone and soft tissue growth, improves natural aesthetics.

TAPERED BODY WITH SPIRAL DESIGN

- Optimal soft tissue support.
 - Excellent primary stability.
 - Improves bone condensation during insertion.

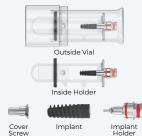
AGGRESSIVE APICAL THREADS

 Allow for more aggressive bone engagement for indications such as immediate extraction sockets, poor bone quality, and immediate loading.

RBM - RESORBABLE BLAST MEDIA

Promotes faster and stronger bone integration, enhancing the stability of dental implants.

SELF TAPPING SYSTEM


- Self-tapping.
- Self-drilling.
- Increases load distribution.

ROUND APEX

- Enhances implant stability.
- Protects sinus from perforation, and minimizes the risk of anatomical structure damage.

PACKAGE CONTENT

(\sim		D	(mm)		D2 (m	m)	D3 (mm)	L (mm)		CODE
	\bigcirc										10		R3010
Y.			Ç	Ø3.0		Ø2.7	′5	Ø	2.3	1	1.5		R3011
2	.0mm										13		R3013
/											8		R3508
1											10		R3510
			Ç	Ø3.5		Ø3.	1	Ø	2.4	1	1.5		R3511
										13		R3513	
2.	42mm										16		R3516
	DI	►;									6		R3706
		Ś.ł									8		R3708
1		3				~		Ø3.1		10		R3710	
_		3	Q)3.75		Ø3.7	5		1	1.5		R3711	
	\ //	1									13		R3713
		51									16		R3716
E											6	1	R4206
Æ											8	1	R4208
Ŕ			~ . ~		~ - ~	_	~			10		R4210	
/ /		Ç	ð4.2		Ø3.9	95	Ø.	3.2	۱	1.5		R4211	
/ /											13		R4213
/ /	$//\Lambda$										16		R4216
/ /											6		R5006
/ /	$//\Lambda$,									8	I	R5008
/ /	//K		Ø5.0			Ø4.6		đ			10		R5010
/ /	$ \neg$							Ø4.1		1	1.5		R5011
/ /	//										13		R5013
											16		R5016
-	D3												
	D2												
		Drill	10		-		ហ	0		En I	ļ	-	
ril	ling	Marking Drill	Ø2.0	Ø2.5	Ø2.8	Ø3.2	Ø2.5x3.75	Ø2.7x4.0	Ø3.65	03.75x4.2	Ø4.2	04.5	
	ocol	1ark	G.	G.			Ø2.	MIII Ø2		000 000			
	.0001		Ö	0	ě							\circ	
	Soft Bone	•	_0_		Ū	•	v	v	•	•	-	9	
0	Hard Bone	<u> </u>	_0_	_ <u>_</u>	-•								
5	Soft Bone	•	-0-		•								
5	Hard Bone	•	-0-										
75	Soft Bone Hard Bone	• •											
	Soft Bone	• •											
2	Hard Bone	<u> </u>	_0_		-•					-0			
0	Soft Bone	•	-0-	-0-	•						-•	6	
	Hard Bone	•	_0_									-0	
aaes	ted drilling proto	col is only	a recom	mondatio	n and	should no	t replace	a the doct	or's opinio	n			

D Pr

Ø3

Ø3.7

Ø4

Ø5.

GD Dental Implants

DENTAL IMPLANTS

nal Hex

DENTAL IMPLANTS

CODE A3508

A3510

A3511

A3513

A3516

A3708

A3710

A3711

A3713

A3716

A4206

A4208

A4210

A4211

A4213

A4216 A5006

A5008

A5010

A5011

A5013 A5016

A6006

A6008

A6010

A6011 A6013

ABA - Spiral Implant

ABA Implant is a highly compatible implant solution based on the popular **Internal Hexagon connection** with **SLA - Sand blast, double etched in acid surface treatment.** With its tapered body and exceptional self-drilling capabilities, it establishes a strong and stable connection suitable for immediate loading. ABA Implant can be used in all types of surgical procedures - two stages, immediate loading, and flapless for all types of ridges. It works especially well on narrow ridges without needing prior bone grafting.

CONNECTION: Internal Hexagon 2.42mm. MATERIAL: Ti-6AI-4V ELI (Titanium Grade 5). SURFACE TREATMENT: SLA - Sandblast, Large Grit, Acid-etch. STERILIZATION: Gamma irradiation.

SPECIFICATIONS:

CONNECTION AND PLATFORM SWITCHING

- Internal Hexagon 2.42mm One universal platform for all diameters.
- Minimizes crestal bone loss, promotes bone and soft tissue growth, improves natural aesthetics.

TAPERED BODY WITH SPIRAL DESIGN

• Optimal soft tissue support .

loading.

- Excellent primary stability.
- Improves bone condensation during insertion.

AGGRESSIVE APICAL THREADS

3

SLA - SANDBLAST, LARGE GRIT, ACID-ETCH

Allow for more aggressive bone engagement.

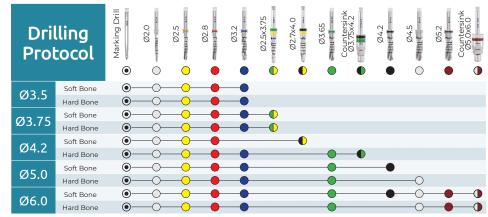
for indications such as immediate extraction sockets, poor bone quality, and immediate

• Enhances dental implant stability and osseointegration, improving long-term success rates.

SELF TAPPING SYSTEM

- Self-tapping.Self-drilling.
- Increases load distribution.

APEXEnhances implant stability.Sharp and deep threads



Holder

Screw

	D1 (mm)	D2 (mm)		1 (100100)	
\bigcirc	D1 (mm)	D2 (mm)	D3 (mm)	L (mm)	
(\bigcirc)				8 10	
\checkmark	Ø3.5	Ø3.1	Ø2.4	11.5	
2.42mm	Ø3.5	Ø3.1	<i>ω</i> Ζ.4	13	
DI				16	
				8	
$\gamma \gamma \gamma \gamma \gamma \gamma$				10	
	Ø3.75	Ø3.75	Ø3.1	11.5	
	20170	20170	W3.1	13	
				16	
				6	
		(77 OF		8	
	<i>a</i> 1.2		<i>(d</i> 7.2)	10	
	Ø4.2	Ø3.95	Ø3.2	11.5	
\mathcal{N}/\mathcal{K}				13	
				16	
				6	
				8	
////\\	Ø5.0	Ø4.6	Ø4.1	10	
	Ø <u></u> 3.0	Ø4.0	Ø4.1	11.5	
				13	
IK				16	
				6	
////				8	
	Ø6.0	Ø5.6	Ø5.1	10	
D3				11.5	
D2				13	

The suggested drilling protocol is only a recommendation and should not replace the doctor's opinion.

DENTAL IMPLANTS

DENTAL IMPLANTS

GD

EVA - Mountless Implant

EVA Implant is a highly compatible implant solution based on the popular **Internal Hexagon connection** with **RBM** - **Resorbable Blast Media surface treatment**. It is ideal for both one-stage and two-stage implantation protocols and performs exceptionally well across various types of bone tissue, including immediate loading in post-extraction sockets. The implant's cylindrical-conical body and progressive threading ensure exceptional fixation and a bone-condensing effect, even in cases where bone quality is challenging. It features a reverse-tapered neck and platform switching to optimize the preservation of bone and soft tissue volumes, providing excellent aesthetics and stability.

CONNECTION: Internal Hexagon 2.42mm. MATERIAL: Ti-6AI-4V ELI (Titanium Grade 5). SURFACE TREATMENT: RBM - Resorbable Blast Media. STERILIZATION: Gamma irradiation.

SPECIFICATIONS:

CONNECTION AND PLATFORM SWITCHING

- Internal Hexagon 2.42mm One universal platform for all diameters.
 Minimizes crestal bone loss, promotes bone
- and soft tissue growth, improves natural aesthetics.

- Offers unparalleled fixation and a bonecondensing effect, even in challenging bone quality scenarios.
- Enhances implant stability.

DOUBLE PROGRESSIVE THREADS

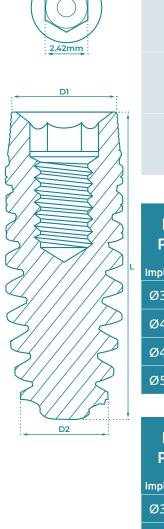
- Enhances load distribution within the cortical bone, promoting strength and durability.
 Deeper threads towards the bottom facilitate
- bone condensing in the cancellous layer, increasing implant stability and longevity.

• Promotes faster and stronger bone integration, enhancing the stability of dental implants.

SELF TAPPING SYSTEM

- Increased thread depth and cutting edges.
- Self-drilling.
- Increases load distribution.

AGGRESSIVE APICAL APEX


Enhancing bone condensing.
Features expanding threads at the bottom, offering a secure fit and sealing effects.
ensures optimal implant stability and minimizes the risk of micromotion, promoting reliable osseointegration and long-term success.

D1 (mama)	D2 (mm)	1 (100 100)	CODE
D1 (mm)	D2 (mm)	L (mm)	CODE
		8	E3508
Ø3.5		10	E3510
	Ø2.82	11.5	E3511
,	/	13	E3513
		16	E3516
		8	E4208
		10	E4210
Ø4.2	Ø3.2	11.5	E4211
	/	13	E4213
		16	E4216
		8	E4508
		10	E4510
Ø4.5	Ø3.5	11.5	E4511
		13	E4513
		16	E4516
		8	E5008
		10	E5010
Ø5.0	Ø4.0	11.5	E5011
	,	13	E5013
		16	E5016

DLC Step Drills

	lling tocol	Marking Drill	Ø2.0	Ø2.4 - Ø2.8	Ø2.8 - Ø3.2	Ø3.2 - Ø3.65	Ø3.65 - Ø4.0	Ø4.0 - Ø4.5	Ø4.6 - Ø5.2	
lant	Bone Type	۲	\bigcirc							
3.5	D4 D3 , D2 D1))			
4.2	D4 D3 , D2 D1)			
4.5	D4 D3 , D2 D1) 							•	
5.0	D4 D3 , D2 D1) 						} (•	•
		DLC	: Str	aig	ht C)rill	5			
Dri	lling	Drill	5.0	2.5	5.8	3.2	;65 ·····	4.2	4.5	0.0

Implant Bone Type Implant Bone Type Ø3.5 D4 D3,D2 D4 D4 D4 Ø4.2 D3,D2 D4 D4 Ø4.5 D3,D2 D4 O Ø4.5 D3,D2 D1 O Ø5.0 D3,D2 D1 O		tocol	Marking	Ø2.0	Ø2.5	Ø2.8	Ø3.2	Ø3.65	Ø4.2	Ø4.5	Ø5.0
Ø3.5 D3, D2 0 D1 D4 Ø4.2 D3, D2 D1 0 D4 0 Ø4.5 D3, D2 D4 0 Ø4.5 D4 D4 0 D4 0 Ø5.0 D4	Implant	Bone Type	۲	\bigcirc	0	•		ightarrow	•	\bigcirc	
D1 D4 Ø4.2 D3, D2 D1 D4 Ø4.5 D3, D2 D1 D4 Ø4.5 D3, D2 D1 D4 Ø4.5 D3, D2 D1 D4 Ø5.0 D3, D2	(X) E		0-	-0-	-0-						
Ø4.2 D3, D2 0 D1 0 D4 0 D3, D2 0 D4 0 D3, D2 0 D4 0	د.دھ		<u> </u>				—				
Ø4.5 D1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<i>α</i> 12			<u> </u>							
Ø4.5 D4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ø4.Z					_					
Ø5.0 D3, D2		D4	•	—Ŏ-		—ŏ	—ŏ-	—ŏ			
Ø5.0 D4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ø4.5			<u> </u>				<u> </u>	•	~	
Ø5.0 D3, D2 O O O O O				-0-					-	_0	
	Ø5 0								_		
	0.0			$-\check{\circ}$		—	—ŏ	—ŏ	-ŏ	-0-	

· The suggested drilling protocol is only a recommendation and should not replace the doctor's opinion.

2.42mm

Dl

D3

D2

CFI - Cylindrical Implant

CFI Implant is a highly compatible implant solution based on the popular **Internal Hexagon connection** with **SLA - Sand blast, double etched in acid surface treatment.** perfect for dense bone cases, but appropriate for all types of bone augmentation procedures. It's strong fit and proven tapered design ensures stability during procedures. Micro rings optimize shear strength, while the combined cylindrical and conical shape with V-shaped threads enhance it's stability. The flat-cutting apex allows final adjustments during placement.

CONNECTION: Internal Hexagon 2.42mm. **MATERIAL:** Ti-6AI-4V ELI (Titanium Grade 5).

SURFACE TREATMENT: SLA - Sandblast, Large Grit, Acid-etch. STERILIZATION: Gamma irradiation.

SPECIFICATIONS:

CONNECTION AND PLATFORM SWITCHING

- Internal Hexagon 2.42mm One universal platform for all diameters.
- Minimizes crestal bone loss, promotes bone and soft tissue growth, improves natural aesthetics.

V-SHAPED THREADS AND MICRO RINGS

- Improved Stability.
 - Deliver optimal surface area, better load distribution, and reduced crestal stress.

TAPERED BODY WITH CYLINDRICAL AND CONICAL SHAPE

- Excellent primary stability.
- Cylindrical shape promotes long-term osseointegration by enlarging surface area and bone to implant contact.

SLA - SANDBLAST, LARGE GRIT, ACID-ETCH

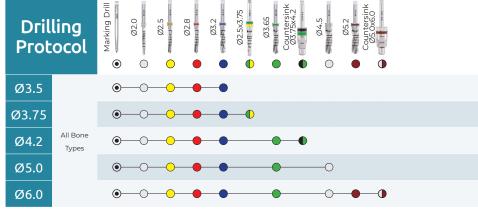
 Enhances dental implant stability and osseointegration, improving long-term success rates.

SELF TAPPING SYSTEM

- Self-tapping.
- Self-drilling.
- Increases load distribution.

FLAT APEX

• Enhances implant stability.


• Allows final adjustments during placement.

PACKAGE CONTENT

	D1 (mm)	D2 (mm)	D3 (mm)	L (mm)	CODE
				8	C3508
				10	C3510
	Ø3.5	Ø2.8	Ø2.1	11.5	C3511
				13	C3513
				16	C3516
				8	C3708
				10	C3710
	Ø3.75	Ø3.2	Ø2.5	11.5	C3711
				13	C3713
/3				16	C3716
₹/}				6	C4206
₹/ />		Ø3.6	Ø2.9	8	C4208
\$/ \>	Ø4.2			10	C4210
§/ />	Ø4.Z			11.5	C4211
3/K				13	C4213
<i>≶/ /</i> >∣				16	C4216
/ <u>></u> L				6	C5006
R				8	C5008
	Ø5.0	Ø4.2	Ø3.5	10	C5010
	Ø3.0	Ø4.Z	Ø3.5	11.5	C5011
				13	C5013
$ \mathcal{R} $				16	C5016
				6	C6006
				8	C6008
\square	Ø6.0	Ø5.2	Ø4.5	10	C6010
				11.5	C6011
				13	C6013
-					

· The suggested drilling protocol is only a recommendation and should not replace the doctor's opinion.

MAX - Basal/Cortical Spiral Implant

MAX Implant is a highly compatible implant solution based on the popular Internal Hexagon connection with RBM - Resorbable Blast Media surface treatment. It is specifically recommended for soft bone, but highly suitabl for all bone types. MAX features sharp, deep threads and aggressive threads, which can be placed immediately without the waiting period of osteointegration or additional augmentation with bone replacement materials. The implant is placed with the threads orthogonally to the occlusion load, ensuring remarkable stability in the cortical bone and improving chewing load distribution.

CONNECTION: Internal Hexagon 2.42mm. MATERIAL: Ti-6AI-4V ELI (Titanium Grade 5). SURFACE TREATMENT: RBM - Resorbable Blast Media. **STERILIZATION:** Gamma irradiation.

SPECIFICATIONS:

CONNECTION AND PLATFORM SWITCHING

- Internal Hexagon 2.42mm One universal platform for all diameters.
- Minimizes crestal bone loss, promotes bone and soft tissue growth, improves natural aesthetics.

BASAL/CORTICAL BONE POSITIONING

- Smooth-surface neck.
- Ideal for patients with bone structure problems.
- Better chance of success and durability. • Even chewing load distribution.

SHARP, DEEP, AND AGGRESSIVE THREADS

or additional augmentation with bone replacement materials.

Can be placed immediately without

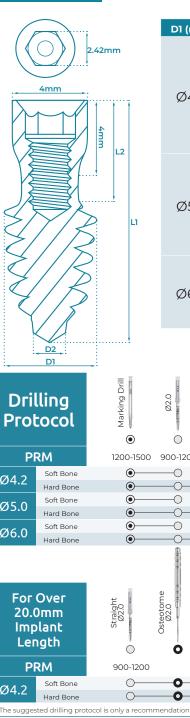
the waiting period of osteointegration

RBM - RESORBABLE BLAST MEDIA Promotes faster and stronger bone

integration, enhancing the stability of dental implants.

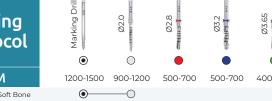
TAPERED THREAD AND TAPERED CORE BODY

- Excellent primary stability.
- Improves bone condensation during insertion.



PACKAGE CONTENT

DENTAL IMPLANTS

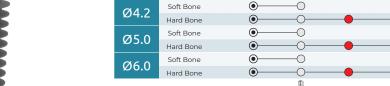


D1 (mm)	D2 (mm)	L1 (mm)	L2 (mm)	CODE
	1.8	10	4.5	G4210
	1.8	11.5	4.7	G4211
	1.8	13	5	G4213
<i><i>(</i>)</i>	1.8	16	6	G4216
Ø4.2	2.5	18	7	G4218
	2.5	20	7.5	G4220
	2.5	22.5	7.5	G4222
	2.5	25	7.5	G4225
	1.8	8	4.1	G5008
	1.8	10	4.5	G5010
	1.8	11.5	4.7	G5011
Ø5.0	1.8	13	5	G5013
	1.8	16	6	G5016
	1.8	18	7	G5018
	1.8	20	7.5	G5020
	2	8	4.1	G6008
	2	10	4.5	G6010
Ø6.0	2	11.5	4.7	G6011
	2	13	5	G6013
	2	16	6	G6016

Ø.

ist

500-700



Conical

500-700

Osteotom Ø3.0

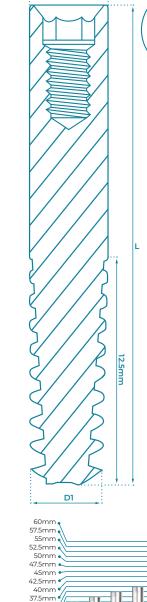
С

· The suggested drilling protocol is only a recommendation and should not replace the doctor's opinion.

Internal He

DENTAL IMPLANTS

2.42mm



ZYG - Zygomatic Implant

ZYG Implant is a highly compatible implant solution based on the popular Internal Hexagon connection with RBM - Resorbable Blast Media surface treatment. Specifically created to address issues concerning a depleted upper jawbone, making it highly suitable for graft-less treatment with immediate loading. The smooth and polished implant neck facilitates effortless insertion, and the sharp and robust threads at the apex firmly anchors the implant to the zygomatic bone. This implant is intentionally designed for an extramaxillary approach.

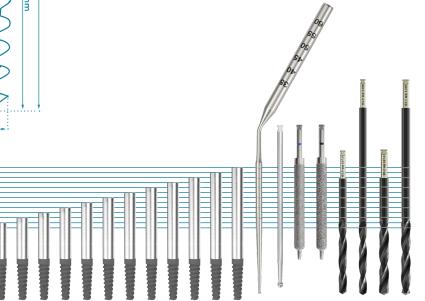
CONNECTION: Internal Hexagon 2.42mm. MATERIAL: Ti-6AI-4V ELI (Titanium Grade 5). SURFACE TREATMENT: RBM - Resorbable Blast Media. STERILIZATION: Gamma irradiation.

PACKAGE CONTENT Image: Content Outside Tube Inside Tube Image: Content Content Image: Conten Image: Conten

35mm 32.5mm

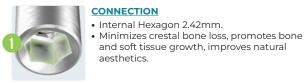
30mm

D


	D (mm)	D1 (mm)	L (mm)	CODE
			30	Z4230
			32.5	Z4232
			35	Z4235
			37.5	Z4237
			40	Z4240
			42.5	Z4242
	Ø4.2	3.5	45	Z4245
			47.5	Z4247
			50	Z4250
			52.5	Z4252
			55	Z4255
			57.5	Z4257
			60	Z4260

DRILLING PROCEDURE

- Irrigation is strongly advised throughout the drilling procedure. When drilling with irrigation, use an intermittent motion to allow debris to be flushed away.
- Continue until the required depth is reached.
- Do not exceed 1500 RPM.


CAUTION

- During drilling procedures, avoid lateral pressure on the drills Lateral pressure to the drill can cause drill fracture.
- Before beginning drilling activities, ensure that the drill is properly fastened into the hand-piece.

• The suggested drilling protocol is only a recommendation and should not replace the doctor's opinion.

SPECIFICATIONS:

SMOOTH SURFACE NECK

• Easy insertion to the zygomatic bone.

AGGRESSIVE APICAL THREADS

 Allow for more aggressive bone engagement for indications such as immediate extraction sockets, poor bone quality, and immediate loading.

RBM - RESORBABLE BLAST MEDIA

Promotes faster and stronger bone integration, enhancing the stability of dental implants.

TAPERED BODY WITH SPIRAL DESIGN

- Optimal soft tissue support .
- Excellent primary stability.
- Improves bone condensation during insertion.

- California California
- Self-tapping.Minimal drilling.
- Increases load distribution.